	Our Solutions 00 000000	Example studies 0000000 00	

Balancing experimental lists without sacrificing voluntary participation

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

July 27, 2011

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions 00 000000	Example studies 0000000 00	

Andrew Watts

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Outline	Our Solutions 00 000000	Example studies 0000000 00	

Introduction

Our Solutions

Super-additive Compensation (progressive pay) List Balancing

Example studies

Examples of progressive pay schemes Examples of list balancing

Conclusions

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Introduction ●00	Our Solutions 00 000000	Example studies 0000000 00	
Crowdsourcing f	for Psycholinguistics Research			

Why crowdsourcing?

- Provides ready access to a large heterogeneous pool of participants
 - Participants we normally wouldn't have access to in a local lab
 - Participants with multiple language backgrounds
- Allows for rapid data collection

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Introduction ○●○	Our Solutions 00 000000	Example studies 0000000 00	
Crowdsourcing for Ps	sycholinguistics Research			

What it requires - Mirroring procedures in the lab

- Want to be able to use balanced factorial designs (Latin square design)
- Ethics: voluntary participation
 - Need to allow participants to voluntarily abort experiments
- This can cause problems
 - Creates Zipf-distributed data and unbalanced lists
 - Makes data complicated or impossible to analyze (loss of power, etc)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Introduction ○○●	Our Solutions 00 000000	Example studies 0000000 00	
Crowdsourcing for Psyc	holinguistics Research			

Desiderata

- A way to ensure that participants see all (or most) of the items in their assigned experimental condition
 - While still allowing voluntary withdrawal from experiment at most times during the experiment
- A way to ensure that all items within an experimental condition are seen by relatively equal numbers of participants

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions •o •ooooo	Example studies 0000000 00	
Super-additive (Compensation (progressive pay	·)		

How do you get workers to do long experiments?

- Pay well and develop a reputation for doing so and for paying in a timely manner
- Take advantage of the Bonus system to reward good workers and weed out less interested and committed workers

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions ○● ○○○○○○	Example studies 0000000 00	
Super-additive	e Compensation (progressive pay)		

Pay low, bonus high

Compensation bar graph shown to participants

- Example with \$0.10 base and bonuses of:
 - \$0.45 for 5 HITs
 - \$1.50 for 10 HITs
 - ▶ \$3.90 for all 16 HITs
- Vertical lines show levels where bonus increases

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Outline		0 0 0	ur Solutions 0 00000	Example studies 0000000 00	
List Balancing					
-	 C 11				

The problem of list balancing on MTurk

- We want to do factorial designs
- MTurk does not natively support the idea of multiple lists

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Outline		Our Solutions 00 00000	Example studies 0000000 00	Conclusions
List Balancing				
Our list	balancing	solution - mtur	ker side	
		eters. e.g. Work	anD Our Lab	
Worker	PC Request HI	Paramer Paramer Mechanical Turk Server	Vid Lab	

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Database

UNIVERSITY of ROCHESTER → □ → → ミ → モ → モ = → つ へ ()

Balancing experimental lists without sacrificing voluntary participation

Page with iframe

Rendered HIT in iframe

	Our Solutions ○○ ○○●○○○○	Example studies 0000000 00	
List Balancing			

External Question workflow - experimenter side

Andrew Watts & T. Florian Jaeger

P Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions 00 000000	Example studies 0000000 00	
List Balancing			

On HIT request

Outline	Our Solutions		
	00	000000	
List Balancing			

List selection algorithm

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions	Example studies 0000000 00	
List Balancing			

Caveat: Balance remains imperfect

- Balanced list assignments in *our database*
- But MTurk provides no callbacks when HITs are submitted or returned (up to 25%)
- ightarrow Number of workers actually on each list can be unbalanced
 - For large number of participants, this evens out
 - Quick fix for all other cases: request half of desired HITs, examine balance, restrict lists to those that need to be filled, iterate sequence until lists are filled and close to balanced

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions oo oooooo	Example studies	

Example studies

- Studies 1-3 (Jaeger, Levy, and Ferreira, 2010): using different progressive pay schemes
 - Syntactic Reduction of Object-extracted Relative Clauses
 - Written Recall: Encode sentence for 8 seconds, two simple math problems, recall cue shown for 2 seconds, type complete sentence.
- Studies 4-5 (Hansen-Karr, Ferris, and Jaeger, in prep): Using different ways to balance list
 - Syntactic priming: auditory comprehension to written production of ditransitives

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions 00 000000	Example studies •••••• ••	
Examples of progressiv	ve pay schemes			

Studies 1-3: Data

- Study 1: 2304 critical items (31% data loss)
- Study 2: 452 critical items (34% data loss)
- Study 3: 2048 critical items (23% data loss)
- (comparable to lab-based experiments; e.g. Ferreira and Dell, 2000 had 30-60% data loss)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions 00 000000	Example studies ⊙●○○○○○ ○○	
Examples of progressiv	ve pay schemes			

Study 1

- Each HIT consisted of 8 trials (given the ordering constraints, these were likely to be 5-6 fillers and 2-3 targets)
- Each HIT paid \$.10, plus
 - \$0.40 for 4 HITs
 - \$1.00 for 8 HITs
 - \$2.00 for all 12 HITs

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions 00 000000	Example studies 0000000 00	
Examples of pro	ogressive pay schemes			

Study 1: Result max 12 hits/subj or 48 items/subj

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions 00 000000	Example studies 0000000 00	
Examples of progress	sive pay schemes			

- Each HIT consisted of one item (subjects can stop after every trial)
- Each HIT paid \$.02, plus
 - ▶ \$.20 for per every 20 HITs (more regular increments)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions 00 000000	Example studies 0000●00 00	
Examples of pro	gressive pay schemes			

Study 2: Result max 96 hits/subj or 32 items/subj

		Our Solutions 00 000000	Example studies 00000●0 00	
Examples of prog	gressive pay schemes			

Study 3

- Each HIT consisted of one trial
- Each HIT paid \$.02, plus
 - \$.20 for 20 HITs
 - \$0.50 for 40 HITs
 - \$1.25 for 80 HITs
 - \$1.50 for all 96 HITs (shifted last increment to end of list)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

		Our Solutions 00 000000	Example studies 000000● 00	
Examples of pro	ogressive pay schemes			

Study 3 - Results max 96 HITs/subj or 32 items/subj

		Our Solutions 00 000000	Example studies 0000000 •0	
Examples of list ba	alancing			

Studies 4 and 5

- Short experiments (about 10 minutes) run with many participants:
 - Only 25 listen trials (10 primes, 15 fillers), followed by 10 production trials (4 targets, 6 fillers)
 - 80 (Study 4) to 192 participants (Study 5) in 1-3 days, each paid \$1.
- Wanted 12 workers on each list for both experiments
 - Study 4: 6 lists
 - Study 5: 16 lists

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions 00 000000	Example studies ○○○○○○○ ○●	
Examples of list			

List balance

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions 00 000000	Example studies 0000000 00	Conclusions

Conclusions

- Crowdsourcing can provide quality data
- Via progressive pay we can come close to achieving conditions similar to those in the lab without sacrificing the benefits of crowdsourcing
- We can achieve list balance on Mechanical Turk
- Changes how we do experiments (shorter experiments with more subjects; can avoid learning effects)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

	Our Solutions		Conclusions
	00 000000	0000000 00	

Acknowledgements

- Thanks to Camber Hansen-Karr and Jeremy Ferris for the use of their experiment data
- Thanks to Whitney Gegg-Harrison for feedback on the presentation and general support

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Appendix Additional material

Andrew Watts & T. Florian Jaeger

LP Lab Department of Brain and Cognitive Sciences University of Rocheste

Additional material

- External Question API docs
- Jinja2 template docs
- SQL Alchemy docs

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Our List-Balancing Solution: Tech details

- Use the External Question API
- Create a database and CGI on our webserver
- When a worker accepts a HIT, assign them to a list using balancing algorithm
 - Original system used Perl w/ CGI, Template::Alloy::Velocity, and DBD::MySQL
 - Current system uses Python WSGI, Jinja2 templates, and SQL Alchemy

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Data - Study 1

- Starting point: 3456 HITs ((12 HITs * 8 items) * 36) from 99 workers, including 2304 critical items
- Items excluded if participant didn't answer both math problems correctly. (145 cases, 6.3%)
- Items also excluded if their length (in words) didn't correspond to original sentence length or if response was like "I don't remember" or "I forgot". This excluded 505 items (22% of the data).
- Excluded all workers which contributed fewer than 5 data points
- After all exclusions, left with 1585 items, or 68.8% of original data (from 64 workers)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Items/subject - Study 1 max 48

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Experiment Design - Study 2

- 32 critical items and 64 fillers
- Each HIT consisted of one trial

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Compensation - Study 2

Each HIT paid \$.02, plus

\$.20 for per every 20 HITs

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Data - Study 2

- Starting point: 1344 HITs (96 HITs * 14) from 59 workers, including 452 critical items (from 51 workers; 8 did only fillers)
- One item in list was corrupted and was excluded (16 cases) resulting in 3.6% data loss
- Items excluded if participant didn't answer both math problems correctly. (16 cases, 3.6%)
- ▶ 1 unacceptable answers and 24 different answers (excluded, 5.5%)
- 74 RConset mistakes (excluded, 16.4%)
 - 67 of which were just substitutions of pronouns for the repeated NP from the first sentence. Results don't differ either way.
- Left with 64.4% of original data (from 28 workers)

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

HITs per subject - Study 2 max 96

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Items per subject - Study 2 max 32

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Experiment Design - Study 3

- 32 critical items and 64 fillers
- Each HIT consisted of one trial

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Compensation - Study 3

Each HIT paid \$.02, plus

- \$.20 for 20 HITs
- \$0.50 for 40 HITs
- \$1.25 for 80 HITs
- ▶ \$1.50 for all 96 HITs

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Data - Study 3

- Starting point: 6144 HITs (96 HITs * 64) from 158 workers, including 2048 critical items (from 151 workers; 7 did only fillers)
- Items excluded if participant didn't answer both math problems correctly. (192 cases)
- Items also excluded if their length (in words) didn't correspond to original sentence length. This excluded 3.3% of the data.
- Excluded all workers which contributed fewer than 5 data points
- After all exclusions, left with 87.3% of original data (from 97 workers)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

HITs per subject - Study 3 max 96

Andrew Watts & T. Florian Jaeger

HLP Lab Department of Brain and Cognitive Sciences University of Rochester

Items per subject - Study 3 max 32

